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Abstract--Analytic penetration modeling usually relies on either a momentum balance or an 
energy-rate balance to predict depth of penetration by a penetrator based on initial geometry 
and impact velocity. In recent years, fairly sophisticated models of penetration have arisen that 
develop the three-dimensional flow field within a target. Based on the flow field and constitutive 
assumptions, it is then possible to derive a momentum or an energy-rate balance. This paper 
examines the use of assumed flow fields within a target created by impact and then examines 
the resulting predicted behavior based on either momentum conservation or energy conserva- 
tion. It is shown that for the energy-rate balance to work, the details of the energy transfer 
mechanisms must be included in the model. In particular, how the projectile energy is initially 
transferred into target kinetic energy and elastic compression energy must be included. As 
impact velocity increases, more and more energy during the penetration event is temporarily 
deposited within the target as elastic compression and target kinetic energy. This energy will 
be dissipated by the target at a later time, but at the time of penetration it is this transfer of 
energy that defines the forces acting on the projectile. Thus, for an energy rate balance approach 
to successfully model penetration, it must include the transfer of energy into kinetic energy 
within the target and the storage of energy by elastic compression. Understanding the role of 
energy dissipation in the target clarifies the various terms in analytic models and identifies their 
origin in terms of the fundamental physics. Understanding the modes of energy transfer also 
assists in understanding the hypervelocity result that penetration depth only slowly increases 
with increasing velocity even though the kinetic energy increases as the square of the velocity. 
© 2001 Elsevier Science Ltd. All rights reserved. 
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INTRODUCTION 

Over the past few years, sophisticated models of penetration have been developed that rely on detailed 
models of how material within a target behaves during penetration. Given a model of target response, either 
an energy-rate balance or a momentum balance can be used to then obtain an equation of motion for the 
projectile. Integrated centerline momentum balances have produced good results, where the integral is taken 
along the centerline with an assumed velocity profile in the target and projectile (Walker and Anderson [ 1 ]). 
However, it is not possible to use a "global" energy balance in order for the energy-rate balance method to 
work. For an energy-rate balance model to work, it is necessary to take into account the mechanisms of 
energy transfer, and not just the global quantities. 

An energy-rate balance model must include the intermediate stages detailing how energy is transferred 
to the target in kinetic and elastic compression forms, and not just deal with the fact that the energy is finally 
dissipated through plastic flow. In this regard, it is similar to the fact that for fluids the energy transfer 
mechanisms at the various scales in turbulent flow must be explicitly included in order to accurately model 
turbulence (known as the energy cascade, Hinze [2]). To give a penetration example, if the mechanism of 
the energy transfer process are ignored, and only the final plastic dissipation in the target is included, consider 
for simplicity a case of rigid penetration. If the projectile penetrates a metal target with a given plastic 
dissipation per unit depth dW/dh, based on the flow within the target, and only the final dissipation leads to 
energy loss by the projectile, then the final depth of penetration would be given by 

(Er)o initial kinetic energy 
depth dW/dh - dissipation per unit depth (1) 
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This assumption predicts that penetration behaves as the velocity squared. Though true for non-deforming 
projectiles at low velocities, it is not true for high velocities. When one carefully goes through the energy-rate 
balance and compares it to a momentum balance, the term that is missing is a (1/2)p,v 2 term. In order for 
this term to be in an energy rate balance, it is necessary to include the intermediate energy transfer into 
kinetic energy and elastic compressive energy in the target. 

This paper explores how energy is initially transferred to the target through four examples. First, energy 
partitioning in 1-D planar impact will be examined. It will be shown that the energy is evenly divided 
between kinetic and internal energy, and that most of the internal energy initially goes into elastic com- 
pression. Second, a problem of pure shear will be examined where elastic energy is minimal due to the 
absence of compressions and temporary storage of kinetic energy in the target for later dissipation does not 
occur. It is shown for this case that a momentum-based model and an energy-rate based model produce the 
same result, independent of speed. Next, a 2-D cylindrical cavity expansion is considered, to examine how 
the energy is partitioned there between kinetic, compressive, and plastically dissipated energy. Again it will 
be shown that roughly half the energy initially goes into kinetic energy and half goes into internal energy, 
again with most going into elastic compression. Finally, the case of eroding penetration will be examined. 
It will be shown that the initial transfer of energy to the target in the form of kinetic and elastic energy is 
correlated with the (1/2)p,v 2 resistive force that arises in the momentum balance. Finally, detailed hydrocode 
calculations examine the energy partitioning in the target between elastic, dissipated, and kinetic energies 
for a range of velocities. These results show that the mechanics of the energy transfer must be included in 
any model based on an energy-rate balance. Any energy-rate balance based model that does not include 
these effects cannot work for higher velocities. 

T H E  P L A S T I C  D I S S I P A T I O N  R A T E  

To do an energy-rate balance for penetration problems, a necessary mechanism to understand is plastic 
dissipation within the target. Plastic flow dissipates energy and is irreversible. A basic assumption of 
plasticity theory is that deformation can be partitioned into elastic and plastic parts: i.e., that the rate of 
deformation tensor D O = (3v/3x i + 3vj/3xt)/2 can be written 

D o = D~ + D~ (2) 

(see Hill [3], Lubliner [4], Malvem [5]). Stress arises from the elastic deformation through Hooke's law. 
A yield criterion is a requirement placed on the stress: the von Mises yield criterion says that the second 
invariant of the stress deviator tensor cannot exceed a constant based on the flow stress ((l/2)sos ~ <__ y2/3), 
and the Tresca yield criterion says that the maximum shear stress cannot exceed the flow stress (e.g. 
160o- ~,, I < Y). When strict equality holds the material is plastically flowing~part  of the deformation is 
plastic. Plastic flow is called associated when the direction of the plastic flow is obtained by differentiating 
the yield criterion with respect to the stress. In this paper plastic flow will be associated. 

The plastic dissipation rate is defined as the work done by the plastic deformation: 

W p = o i / D ~  (3) 

Plastic flow is assumed incompressible (D~ = 0). For the von Mises yield criterion the plastic dissipation 
can be written: 

/ S  
u>p = Y~P where ~e - ~ 3 D ~ D ~  (4) 

The square root term is referred to as the equivalent plastic strain rate. In this paper it is assumed the velocity 
is continuous and that there is no need to consider internal slip (which can be addressed through shearing 
surfaces). The plastic dissipation rate is 

This rate will be used in examining how energy is deposited in the target for four specific examples. 
The energy stored elastically is computed in a similar fashion. With the stress given by 

6u = ~ 0  + 2Ge,~, where e~ is the strain, the Lain6 constant 2~ = K - (2/3)G, K is the bulk modulus and 
G is the shear modulus, the elastic energy is 

f , 1. , 2 lp2+soso 
e, - 6ode o = ~ e a ) + G g ~ e ~  = 2K 4G (6) 
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and the total elastic energy is 

E, = fe ,dF~ (7) 
d f l  

E N E R G Y  P A R T I T I O N I N G  IN O N E - D I M E N S I O N A L  I M P A C T  

An impactor of thickness L impacts a semi-infinite target of like material (Fig. 1). The impact produces 
a wave running in both directions from the impact surface with particle velocity one half the impact velocity. 
If the target and projectile material is a fluid with an equation of state 

p = KCp/po-1) (8) 

where Kis the bulk modulus and P0 is the initial density, 
then an energy balance for when the shock front 
traveling at velocity c reaches the back of the projectile 
is 

1 2  l(1 2 1(0)2 
~poLov o : 2~pL ~v o + 2 L ~ K  ~ - 1  (9) 

I -I vo 

Lo 

Fig. 1. One-dimensional impact geometry. 

The left hand side of the equation is the initial kinetic energy, and the fight hand side has the first term of 
kinetic energy and the second of energy stored in elastic compression (these latter terms have a factor of 2 
since they represent both the target and projectile). Mass conservation gives that poLo = pL which gives 

1 2 1 2 ( P )  2 ~p~Vo : ~ ,p~Vo+Lr  ~-1 (10) 

The first conclusion is that for a symmetric impact, the energy partitioning between elastic and kinetic energy 
is independent of velocity: half the initial kinetic energy goes into kinetic energy in the projectile and target, 
and half the initial kinetic energy goes into elastic compression in the projectile and target. 

Given an equation of state, it is possible to explicitly calculate the shock front speed using the energy 
balance combined with the mass balance. The length of the compressed region is 

L = ct-(1/2)Vot where Lo=ct (11) 

Mass conservation thus gives P/Po = c/(c - vo/2 ) and, inserting in Eq. (I0), the shock front speed is then 

c = v0/4+'~K/p0+v~/16 (12) 

This result is precisely that obtained through use of the mass and momentum Hugoniot jump conditions 
(P = pocup). (The fact that they agree is a special case because of the linearity of the equation of s tate--for  
this deformation, slow uniaxial loading coincides with the Rayleigh line. In general, shocks dissipate 
additional energy.) Thus, in order for the energy equation to give the same result as the momentum equation, 
it is necessary to include the elastic compression energy. 

What happens to the energy partitioning when an elastic-plastic solid is introduced? First, the partitioning 
of the initial kinetic energy of half into kinetic energy and half into internal energy is maintained. Now some 
of the internal energy goes into dissipated plastic work and some goes into elastic recoverable energy. For 
one-dimensional uniaxial strain loading for a perfectly elastic-plastic solid with a flow stress of Y, the 
incremental loading conditions in the plastically flowing region give rise to the following partition between 
elastic and plastic deformation: 

, 1 2 D ~  D,', = 1 p p I D L = -~D=, n~  = -~O~,, = -~O=, Oyy = D= = --~D= (13) 

The equivalent plastic strain rate is ~' = (2/3) I D~ I, and so for a given strain E~ the compression work that 
went into elastic and into plastic parts is given by 

e, = ~KEf=+~--~, wp = l e ~ l - ~ - ~  (14) 



812 J.D. Walker~International Journal o f  Impact Engineering 26 (2001) 809--822 

(In the above, E,vEL = Y/2Gis the yielding strain and y216G is the elastic energy stored in the stress deviators 
when the material is flowing.) Using this, it is possible to plot the partition between elastic internal energy 
and dissipated energy, in particular for the specific case of steel with p0=7.85 g/cm 3, K=1.67 MBar, G=0.77 
MBar and Y=l.2 GPa (Fig. 2). Initially there is no plastic strain until the I4EJ~ strain is reached, and then 
the ratio of plastic work to total work (energy) rises to a little over 20% before rapidly dropping off as velocity 
increases. Thus, only for low velocities is the energy going immediately into dissipation appreciable; and 
even then, most energy goes into kinetic and elastic forms. 

Though penetration is a 2-D/3-D process, the result 
of the 1-D analysis shows that the initial energy 
transfer from the penetrator to the target is predomi- 
nantly in the form of kinetic energy in the target and 
elastic compression energy of the target. At later time, 
these elastic compressions will release, and the energy 
will be distributed in a different fashion. However, 
during the "penetration," the force the impactor sees 
is related to the energy being transferred at that time. 
Thus the behavior of the projectile is determined by 
the partitioning of energy within the target. 

~I "° ~s- 

I i i i i i i N 
1.~ see 7 ~  I m  l/ae 15lie 1 lwe  

Plwtl¢le velocity 

Fig. 2. Internal energy partition for uniaxial 
strain/one-dimensional impact. 

PURE SHEAR 

The problem of pure shear demonstrates that, when 
elastic compressions and kinetic energy transfer in the 
target are not important, the momentum approach to 
solving the problem and the global energy-rate balance 
approach give the same answer (Walker [6]). Once 
again, for simplicity of analysis it will be assumed that 
the projectile and target are made of the same material. 
A "projectile" of thickn.ess R is connected to an infinite 
half space of "target" material (Fig. 3). There is an 
initial velocity distribution within the target material, 
which will be denoted vo(y), and the projectile has 
initial velocity vo(0)= V. The flow stress of the 
elastic-plastic material is Y. There is no slip between 
the projectile and the elastic-plastic material. 

First an elastic-plastic solution to the problem will 
be presented. When the pure shear problem is run on 

$tallonm'l Mm~dJl 

Initial velocity 
profile in target 

L ~ l c ~ l  7 FIowlmg Mat~--lal ~ M / , "  

\ 

Fig. 3. Shear geometry. 

a hydrocode, it is seen that an elastic shear wave is formed which travels from the free surface of the projectile 
to the initial assumed velocity gradient in the target and reflects there, reducing the velocity, and the shear 
wave travels back again to the projectile free surface, and the process is repeated. The elastic-plastic shear 
problem is thus a wave propagation problem. With each passage of the wave, the material velocity is reduced. 
This continues until the target material response is entirely elastic, at which point the projectile has nearly 
come to rest. The assumption that the projectile and target have the same density and shear modulus precludes 
reflections at the target/projectile interface. 

Elastic deformation in both the target and projectile can be written as a displacement ux = g (y, t). The 
shear strain is ~ = (1/2)~g/~y, and the resulting shear stress is ~ = 2Gc~ = G~gl~y. Placing these terms 

in the momentum balance gives the wave equation ~gl~t  2 = c 2, ~gl~y2 where c, = ~ is the shear wave 
speed. An elastic wave traveUing from the plastic region to the free surface of the projectile can be represented 
as g = g (y + c,t). From this, the particle velocity (the actual speed of the material behind the wave front) 
can be determined: particle velocity = ~gl~t = cg'. The stress wave will have the maximum elastic stress 
allowed. For pure shear, the maximum stress from the von Mises yield criterion is - Y / ~ .  Thus, 

Y 
= 2 G ~  = Gg" (15) 

The elastic wave has a particle velocity of 

particle velocity 
r/4  

= cg'  = 2 c , ~  = --c, G (16) 
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When the elastic shear wave reflects from the free surface of the projectile, it returns in the form -g  (y - c,t), 
since the surface is traction free. The change in particle velocity at the surface of the projectile is then 

Y/~[3 Y/'~3 -2c, Y / ~  (17) 
av = - c , - - - ~ - - c ,  G - G 

or the change in particle velocity at the free surface is twice the particle velocity of the wave- -a  well known 
result. 

The plastically sheafing material reflects like a free surface because of the nonlinear material response. 
The elastic wave cannot be superimposed on the plastic response, and for the shear problem a total reflection 
of the elastic wave occurs when the elastic wave returning from the free surface of the projectile arrives at 
the elastic-plastic interface. To calculate the deceleration, the change in velocity is divided by the travel 
time of the wave. As the problem progresses the distance of the return trip is greater, due to the initial 
velocity profile in the target. If At is the time of the round trip of the wave, then 

Vot(V) + R + R + Vo~(V + Av) 
At = (18) 

Cs 

where V is the velocity of the projectile and Vo I is the inverse of the initial velocity profile in the target. 
An approximate equation of motion for the projectile is 

dV Av 2 Y / ~ p  Y / ~ p  

d-'t- = At - 2R +vol(V)+vol(V +Av) R +vol(V)_c,(Y/~G)(vol),(V) (19) 

Now an energy-rate balance solution to the problem will be derived. Noting how the velocity decreases 
due to the elastic waves, the assumed form of the solution will be (Fig. 4) 

I v0(.~), -R < y < f 
vx = [Vo(y), ff.R<y (20) 

where v r = v z = 0, vo(y) is the initial velocity distri- 
bution in the target, assumed to be differentiable and 
strictly decreasing, and f(t) is a time dependent 
variable describing the location of the elastic-plastic 
interface. All the material to the left of the interface 
(y < f(t)) behaves as a rigid body, while material to 
the right (with vo(y) > 0) is plastically sheafing. With 
the assumed velocity field, the kinetic energy can be 
calculated: 

- f- ov.,y . o . 

~ g 

\ \  (/-.- Vo (y) 

N 
N \ 

Fig. 4. Energy-rate balance velocity profile. 1 2 1 2 t " l  2 
~oRV +~ofV  + J :  ~pvo(y)dy (21) 

where V = v0(Y) is the projectile velocity (which equals the velocity of the target material to the left of : ) .  
Differentiation with respect to time gives 

E x = p (R+f )Vf '  (22) 

is 
For the pure shear geometry considered here, all the deformation is assumed plastic and the local dissipation 

= ~ (23) 

and the total dissipation is 

f0 ~ ° YV Wp = Vb pdy - (24) 
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With the kinetic energy and the rate of dissipation, the energy rate balance is 

Y 
E x + Wp = 0 ~ p(R+vol(IO)9 = - ~ -  (25) 

This equation is qualitatively similar to that derived by the elastic-plastic approach (Eq. (19)), and in the 
limit as G ~ 4-o. the two equations are identical. As an example of an explicit solution, if the initial velocity 
in the target is linear and is expressed by vo(y) = Vo(1 - y IR) ,  then Vol(V) =R(1 - VIVo) and Eq. (25) can be 
integrated using ~ = VdVIdx to calculate the final distance of travel X before the projectile comes to rest: 

(2/3)RV 2 
X - r / , f3  (26) 

The distance of travel is the initial kinetic energy in the system (target plus projectile) divided by the dis- 
sipation per unit distance, as predicted by the naive global argument presented in the introduction. 

The shear problem thus behaves in a simple manner at any speed. Issues of transferring kinetic energy 
to the target that is later dissipated elsewhere or of target compressibility do not arise. That the momentum 
balance and the energy-rate balance agree for the case of pure shear shows that the notion of examining the 
plastic dissipation is qualitatively correct, but that the specific mechanisms of energy transfer arising in 
penetration of targets by projectiles must be taken into account. 

T W O - D I M E N S I O N A L  C Y L I N D R I C A L  C A V I T Y  E X P A N S I O N  

To determine how the energy is transferred during the penetration event, it is most relevant to examine a 
two-dimensional cylindrical cavity expansion (Fig. 5) (Crozier and Hunter [7], Forrestal, et al. [8], Forrestal 
and Luk [9], Walker and Anderson [1]). The presentation here begins with results in Walker and Anderson. 
A linear pressure dependence and elastic-perfectly plastic behavior with a Tresca yield criterion (flee - o ,  = Y) 
are assumed along with a similarly transformation ~ = rlct to reduce the mass and momentum balance 
equations to 

• v 1 Y 
= ~ ( - c ~ + v ) ~ ' , , ,  o".-~ v +~- = p(--c~+v)v' (27) 

q 

In this expression (~rr is the radial stress and c is the speed of the elastic-plastic interface. Assuming that 
Y/K << 1 and that -c~ + v = -c~ leads to: 

y ~ 2  YIp + V 2 
v(~) = -pc~+C3 ~ where c 3 = . ~ p _ V 2  (28) 

The relationship between the elastic-plastic interface velocity and the cavity expansion velocity is 

Defining the bulk sound speed as Co - K~/~, it can be 
shown that for cavity expansion velocities V >_ 0.2Co 
the elastic-plastic interface velocity is nearly the bulk 
sound speed, i.e. c = Co. For a fluid with no shear 
strength, c = Co exactly. Since the interest here is in 
high velocity penetration, it will be assumed that the 
shear strength is negligible when computing the kinetic 
energy and elastically stored energy. This assumption 
greatly simplifies the expressions and allows us to 
ignore the elastic precursor. With this assumption, the 
velocity becomes 

~/1 - ~  v~ 
,,(~) = c3 ~ where c3 - 1 4 ~ - - ~  

and ~ - VIc -- l/ix (30) 

Elastic Undisturbed 
P-.egion Material 

e, I~  

Fig. 5. Cylindrical cavity expansion geometry. 
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Placing this expression back into Eq. (27) gives the stress as 

-.~cc In ( l~'~-~z+ 1 ~ (~rr(~) = I "  3 ~ T  ~ )  (31) 

where is has been assumed that O r , ( l )  = 0. 
The square of the velocity can be integrated to give the kinetic energy at time t = R/V: 

ect 1 ~1~. 1 .2 n2(_21n(~) ; 
Er = Jr, 2 pv22rcrdr = 2g(ct)2 pv2({)~d{ = ~pv  g~x~ 1 - - ~  1 (32) 

Similarly, an estimate of the energy stored in elastic compression is given by 

E, = Jr, -~2rcrdr = pV2ffR In + + In + +2 (33) 

To estimate the amount of energy dissipated due to plastic deformation, it is necessary to determine the 
partitioning between elastic and plastic deformation, similar to what was done for one-dimensional uniaxial 
strain. In this case, the Tresca yield criterion is being used with o0o- Orr = Y. It is possible to show that 
or~ > o= > toe and therefore there is no plastic straining in the z-direction and D~ = -D~o since the flow is 
associated. The rate of deformation decomposes into 

D,~r = D~ = (D,r+Doo)/2, D,Pr = -D~o = (Drr-Doo)/2, D=' = D~ = 0 (34) 

With this, the plastic work is 

= o,jD#df~ = o, , -ooo)D~lf~ = -  YD~d~  = -  Y ( D r r - D o o ) d [ )  (35) 

The velocity (Eq. (30)) gives the following rate of deformation 

0v c3 v ~/1 - ~2  av~ 
Drr  - Or  - c t ~  lz~f~_~ ' Dot - r - c 3 Ct~2 , D= - OZ - 0 (36) 

The total plastic dissipation rate is then 

c, 2 , 5 - - ( 1  l} 
Wp = - f £  y l ( D , , - D . ) 2 ~ r d r  = 2 ~ r J ~ V g { ~ - - ~ l n ( - - ~ + ~ ) -  (37) 

To obtain the total plastic work, this expression is integrated from the cavity at zero radius to radius Vt using 
~RVdt = (I/2)R 2. The result is 

Wp = (38) 

These results allow a determination of how the 
energy is being partitioned as the cavity is expanded. 
For the steel with material properties stated above, Fig. 
6 shows the relative amounts of the total energy 
deposited in the material as a function of cavity 
expansion velocity (the plot covers values of ~ from 
0.1 to 0.9). For example, the relative amount of kinetic 
energy is given by Er/(Er+E, + We). The results are 
similar to those seen in the 1-D impact: nearly half the 
energy goes into kinetic energy and half is divided 
between elastic compression and dissipated plastic 
flow, with most of the latter half going into elastic 
compression. Thus, even though once the forced 
cavity expansion stops most of the energy will be 
dissipated through plastic flow as the expansion is 
brought to rest, the energy transfer mechanism is first 
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into kinetic and elastic energy. The force required to open the cavity depends on the how the energy transfer 
is partitioned. 

P E N E T R A T I O N  

Finally, the penetration of a projectile into a metal target is considered. For eroding flow, hydrocode 
calculations show that the target flow is hemispherical. With assumed velocities in the target and projectile, 
the centerline momentum balance solution to this problem is (Walker and Anderson [1]) 

• . co-1 , 2Ru 1 2 1 2 7 ppv(L-s)+U{pps+p,R-~-~} ( v - u ~ s 2  = 

( ,;, = 1+ + , L = - ( v - u )  (39) 
OA~- s) c 

where R is the radius of the crater, L is the length of the projectile, Pt is the density of the target, pp is the 
density of the projectile, v is the projectile back end velocity, u is the target-projectile interface velocity 
(penetration velocity), c is the wave speed in the projectile, Yt is the target yield strength, op is the projectile 
yield strength, s is the extent of the plastic zone within the projectile and a is the extent of the plastic zone 
in the target in crater diameters. The cavity expansion technique (Eq. (29)) provides a,  and matching velocity 
slopes determines s. The first equation above is the centerline momentum balance, the second is the 
deceleration of the projectile through reflecting elastic waves, and the final equation is the erosion of the 
projectile. 

The centerline momentum balance is arrived at through assumed velocity profiles within the target and 
projectile. The velocity field within the target is of primary interest, and will be presented in detail. The 
target velocity field also is used to calculate the (7/3)ln(oOYt, which arises through assumptions about the 
shear stress within the target and its derivative along the axis of symmetry. 

The model in Eqs. (39) has been shown to give good results over many impact conditions. To compare 
this model, based on a momentum balance, directly with an energy-rate balance, it will be necessary to 
examine the velocity field within the target in detail. This velocity field is based on the observation from 
large scale numerical simulations that the velocities within the target have a hemispherical quality to them. 
To write such a velocity field, it is natural to work in spherical coordinates. The cylindrical symmetry of 
the problem implies no ~ dependence and % = 0. There is no radial component to the velocity at the top of 
the flow field (where 0 = rd2), and the flow is purely radial when 0 = 0. A vector potential yielding such a 
velocity field is 

A" = f ( r )  sin(0)~ (40) 

The curl is taken in spherical coordinates (Malvem [5]) assuming no ~ dependence: 

10 10 10,4, . 
~(r, O) = c~rl(A') 1 0 . ,_r~r(rA~)~O+[r~r(rAo)_r .~le ,  r sin(0) ~-0 (Ai sm(0))e, (41) 

yielding 

v,(r, O) = ~cos(O), vo(r, O) = - 1  dd(rrf) sin(O) (42) 

This formulation has the advantage of there being only one unknown function f .  
Along the axis of symmetry, the velocity is v,(r,O)=2f/r. Thus, the velocity along the centerline 

determines f(r) and so completely determines ~. A convenient choice for f i s  
b 

f(r) = a r + - + c  (43) 
r 

where a, b, and c are constants. This gives rise to terms of the form a,  b/r 2, and c/r in the velocity. The 
b/r term drops out of v 0, which can greatly simplify algebraic expressions. In particular, if c is arbitrarily 
set to zero, 

v , ( r ,O)  = 2 a  + cos(O), v0(r,O) = - 2 a  sin(O) (44)  
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Geometrically this flow field is comprised of a radial flow, scaled by the coefficient bees(O), and a pure 
translation along the z-axis, scaled by the coefficient a, 

Two boundary conditions are available for determining a, b, and c. The boundary conditions are, fL,'st, 
that the flow velocity at the point of contact with the projectile nose must equal the projectile nose velocity, 
and second, that the radial velocity component is zero at the outer edge of the flow field: 

v,(R,0) = V, v,(ff.R,0) = 0 (45) 

The only matertal flow out of the region occurs through the e = n/2 surface. Assuming c = e, these boundary 
conditions yield the velocity field: 

v / ----L-v ve-  _ls,n(e) (46) 

This is the simplest velocity field for the hemispherical penetration problem. The velocity field has a shearing 
surface on the hemisphere boundary, where vo (if.R, e) ;e 0. It is possible to remove this shearing surface by 
using the c term in the potential to force v 0 (if.R, e) = 0. However, this subsequently gives rise to much more 
tedious calculations. In the following, the shearing surface will be ignored. 

To calculate the plastic dissipation, the rigid plastic assumption will be made, since this velocity field is 
incompressible. The rate of deformation tensor components are 

Ovr 2V a2R 2 Ve Vr V a2R 2 
D ~  = r cot(e)-~ - - Dr, = 0, (47) Drr ='~=-r = (a~='~-=|) ~=~ cos(e), r ( a C l )  7 Cos(e), 

D 10ve Vr V ot2R 2 l [ 10v ,  ~V o Vo'] V 0t2R 2 . 
(a2_l) r3 cos(e), D r o = 2 k T ~ + ~ - T J  = 2 ( a ' - l ) 7  sin(e), o . .=o 

This gives a plastic strain rate 

V o~2R 2 1 . 
= --'~a/12 - 11 sin2(e) (C- 1) r 3 

which can be explicitly integrated to give the total dissipation rate Wp: 

W, = 2rtY,{ 1 + ~ . ~ l n ( ' ~ T + ' ~ ) }  VR2Ct~_(1) 

(48) 

(49) 

and the shear stress term from the momentum balance (Eq. (39)) is 

~ln(a)Y, = (2.333333...)ln(a)Y, (51) 

This identifies the plastic dissipation term in the energy-rate balance with the shear-stress term in the 
momentum balance. They are so similar because the momentum balance stress offthe centerline was derived 
using rigid-plastic assumptions (see Walker and Anderson [ 1]). 

As the projectile penetrates, it does work on the target. Within the target, the energy is partitioned into 
three modes: kinetic energy in the target, energy dissipated through plastic flow, and energy stored in elastic 
deformation. Equation (49) addresses energy dissipated through plastic flow. It is now necessary to include 
in the energy-rate balance the mechanisms of energy transfer into target kinetic energy and elastic com- 
pression energy. Based on the assumed hemispherical velocity field, it is possible to calculate the kinetic 
energy in the target in the vicinity of the front of the projectile: 

fn V2RS Er  = l p ,  ]~12d~. 2 = gpt3(0t2_l)2{~4_2~3+20~2_l } (52) 

2Yt{1 + ~ ,~ ln (~] '+ '~ /~)}  ~x21n(ct) - o r  2-  1 ( 2 . 3 3 3 1 9 9 . . . ) ~  Y , _  (50) 

The plastic dissipation is a monotonically increasing function of ~. 
Since the centerline momentum balance equation works well, the terms from it and from the energy-rate 

balance approach will be compared. The dissipation term from the rigid plastic energy rate balance, after 
division by xR~V, is 
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As penetration occurs, some amount of energy is being continuously transferred into the target. While the 
target is doing work on the projectile, energy is being deposited in the target as kinetic and elastic energy. 
If the target is thought of as comprising stacked cylinders (as is often the case when cylindrical cavity 
expansion models are used to compute penetration), once the projectile passes through a cylinder of material 
the kinetic energy and elastic energy in the target will be transformed into another form - eventually dissipated 
through plastic flow - but while the projectile is doing work on the target, the energy is transferred into 
kinetic and elastic energy in the target and that mechanism determines the forces on the projectile. In order 
to estimate the rate at which energy is transferred into kinetic energy within the target using Eq. (52), it is 
necessary to obtain a length scale. In rough terms, the volume of target material in the hemispherical velocity 
field is (2/3)n(txR) 3. To convert this to a cylinder, consider a cylinder of radius txR and height t~h. Equating 
volumes gives h = 2R/3. Dividing Er by h gives a work per unit distance that is being deposited in target 
kinetic energy: 

E g  _ 2 2 
u R  4 2~3+20~2 1} = (0.35 to 0.40)Ptu2ff, R 2 (53) 

h ~P'2(tX 2-  I) 2{0~ - 

where the values are for o~ ranging from 2 to 10. Multiplication by u gives the work rate that goes into the 
kinetic energy in the target in an energy rate balance the term. To compare with the momentum balance, 
divide by rd~Zu to obtain 

Wre Ek 2 
7tR2 u - u-~/(~R u) = (0.35 to 0.40)p,u 2 (54) 

Thus, according to this reasoning, the energy transfer into target kinetic energy is the mechanism accounting 
for the majority of the (1/2)pu 2 term seen in the centerline momentum balance equation. Unfortunately, the 
assumption of an incompressible velocity field does not allow the calculation of energy in elastic compression. 

Using the cavity expansion model to predict the mechanism of energy transfer allows calculation of both 
kinetic and elastic compressive energy terms. The energy loss rate of the projectile is set equal to 

u{(E.)~+(E.)zD+(Wp)~} = u. ~pu ~R (. . .)+~pu ~ [...l+Tr~ Y{...} (55) 

The coefficients in the brackets are given in Eqs. (32), (33), and (38). When divided by ~R2u the target 
resistance from the energy rate balance from the cavity expansion is 

1 2 1 2 ~pu (...)+~pu [...]+ Y{...} (56) 

Comparison with the momentum balance shows that the (1/2)pu 2term originates from the transfer of energy 
to the target in the form of kinetic and elastic energy and the Y term is from plastic dissipation. To directly 
compare, Fig. 7 shows the values of the coefficients for the E r, E, and W r terms; the first two would sum to 
1 if the approaches were exactly the same, and the third would equal 7/31og(co/u)Y, (shown in the plot). It 
can be seen that the coefficients are larger than expected for small velocities, and decrease with increasing 
velocity. The Ex and E, coefficients sum to 1 for tx = 1.6. The material constants used in this plot are those 
previously stated for steel. 

Since energy is being transferred to kinetic and 
elastic compressive energies at a rate that is a function 
of the penetration velocity squared, it is seen that the 
resisting force on the projectile also increases as a 
function of velocity squared. This explains why 
increasing impact velocities do not produce large 
increases in depths of penetration - though the energy 
that goes into initial plastic dissipation does not 
greatly increase, the energy that is transferred from 
the projectile into kinetic energy and elastic energy in 
the target does greatly increase. Though eventually 
nearly all the energy will be dissipated through plastic 
flow, it is the transfer mechanism at the time the 
projectile is penetrating that determines resistance. 

For the energy-rate balance models to be similar to 
momentum balance models, it is necessary to include 
the mechanism of energy transfer within the target. 
Even though the global kinetic energy in the target is 

6 . 0  

5 . 5  

5 .  0 
\ : .  - -  K i n e t i c  E n e r g y  

4 .  5 \:" . . . . . . .  Elosllc Energy 
V. - -  - -  - -  Plastic Oissipat 

4 .  ~'. . . . . . . . . . .  7 log(a lpha) /3 

3 • 5 \ " \ \ .  

3 . 0  " . . ~ \  

2 . 5  " . . - .  

2 . 0  

1 . 5  

1 . 0  . . . . .  . . . . . . . . . . .  

0 . 5  

0 . 0  
1 2 3 4 

CovUy Expansion Velocity (krn/s) 

Fig. 7. Coefficients from cavity expansion. 
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relatively constant for high velocity eroding penetration, the mechanics of how the energy is being supplied 
to the target in kinetic and elastic forms is central to calculating the force that decelerates the projectile. The 
fact that the energy later plastically dissipates in the target is not enough information to determine the 
penetration and penetration history of the projectile. 

To compare with the numerical results, it is necessary to have some idea of how the kinetic energy is later 
dissipated as plastic work in the target. Once the target is put in motion, it continues to move until the energy 
is dissipated. Based on the work above for penetration, an upper bound on the time is obtained by just 
balancing the change in kinetic energy against the work lost through plastic dissipation for the two- 
dimensional cavity expansion (Eqs. (32) and (38)). Letting 

/ c4(~) = 2 In T + ~  - 1  - 1  (57) 

contain all the terms that depend on ~, and assuming that ~ remains constant gives 

E r + Wp = 0 ~ pRV2R+pR2Vf z+YVRc4(~ )  = 0 (58) 

Equation (58) assumes that the cavity is no longer driven, and is only a very rough estimate of behavior since 
the actual problem is not being solved. What is of interest here is the form of the behavior and the time 
scale. Noting that R = V, this can be integrated to give 

R V  = RoVo(1-t/t¢) where t r - pRoVdYc,(~) (59) 

In particular, this implies that the kinetic energy, which depends on (RV) 2 (see Eq. (32)), behaves as 

Er ~ (Er)o(1- t / t f )  2 (60) 

This form can be used to get some idea of the kinetic energy behavior in the target. The following arguments 
assume an eroding penetration is occurring at a roughly constant penetration velocity u. During early 
penetration, energy is dumped into the target in the form of target kinetic energy faster than it is being 
dissipated away, and so the kinetic energy in the target is increasing. When a steady portion of penetration 
is reached, the amount of energy dumped into the target in kinetic energy equals the amount of the target's 
kinetic energy that is lost to dissipation. The steady portion of penetration lasts until the rod has completely 
eroded. After the rod has eroded, the kinetic energy in the target continues to be dissipated: 

;0 / E~ - (EK)wu 1 - - - T Z  = (Er)2o-~-. ~ , tf <_t <terodtd (61) 

[ (1 - (t - t e r o d e d ) / t f ) ,  teroded ¢~ t ¢~ teroded "~" tf 

Figure 8 shows qualitatively the expected time dependence. 
kinetic energies to be presented next. 

Full scale hydrocode calculations were performed 2.00 
with CTH (McGlaun, et al. [ I 0]), similar to those seen 
in Anderson, et al. [11]. The ldD=10, 10 cm long 2. r5 
projectile was tungsten, modeled with a Mie- 2.50 
Griineisen equation of state (p=17.6 g/cm 3, co=3.85 2.25 
kin/s, s=1.44, 7o=1.48) and an elastic-perfectly plastic ~ 2. oo 
constitutive model with a flow stress of 1.5 GPa and ~ ~. 7s 
v--0.30, and the target was steel, modeled with a 

3 Mie-Grtineisenequationofstate(p=7.85g/cm ,Co=4.5 .~ 1.50 
km/s, s=1.49, 70=2.17) and an elastic-perfectly plastic ~ i. 2 s 
constitutive model with a flow stress of 1.2 GPa and ~ i. o 0 
v=0.29. The various components to the energy are 0.7s 
shown in Figs. 9-11 for impact velocities of 1.5 kin/s, 0.50 
3.0 km/s and 4.5 km/s. The projectile kinetic energy o. 2s 
is seen to decrease, mostly through erosion. The total 
target energy is seen to increase in almost like fashion, o. 00 
(It is noticeably less for the 1.5 km/s impact, where the 
amount of energy lost to plastic deformation of the 
projectile is about 11%. The total energy dissipated 
internally within the projectile is nearly independent 
of impact velocities - -about  20 KJ for this projectile- 

This curve qualitatively agrees with the target 
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Fig. 8. Behavior of kinetic energy 
in target expansion. 
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Fig. 9. Energy for 1.5 km/s tungsten into steel. Fig. 10. Energy for 3.0 km/s tungsten into steel. 

so as the impact velocity goes up the relative percentage goes down. Equating this energy rise to plastic 
work gives an average strain in the eroded projectile material of  170%.) Large amounts of  kinetic energy 
in the target are seen at the higher impact velocities (the 4.5 km/s case is still rising when the projectile 
completely erodes at about 55 Its), but even for the 1.5 km/s impact velocity the amount is relevant, even 
though small. Given the interpretation of energy transfer mechanisms given above, the relative rate of  
energy initially going into target kinetic energy and elastic compression energy can be obtained through 
the ratio (1/2)pu2/{(1/2)pu 2 + (7/3)ln(co/u)Y,}. For the three impact velocities here, the CTH computations 
give penetration velocities of  approximately 700 m/s, 1700 m/s, and 2650 m/s, which give the amount of 
energy being transferred into kinetic and elastic energy at 27%, 81% and 95% of the total energy transfer 
for the 1.5 km/s, 3.0 kin/s, and 4.5 km/s impacts, respectively. Thus, for higher velocities, initially most 
of  the energy is delivered into the target through these mechanisms, highlighting the actual energy transfer 
mechanism's importance. 

With the computations the time it takes the 
kinetic energy and elastic energy in the target to 
dissipate (though these may be different) can be 
estimated. The rate of  energy transfer to the target 
for each of the cases is roughly 1.18 KJ/~,  7.2 
KJ/ps, and 25 KJ/ps, and the "steady state" value of 
the energy stored in the target in kinetic and elastic 
energy is estimated to be 8.6 KJ, 95 KJ, and 560 KJ, 
for the three respective velocities. Using Eq. (61), 
the time it takes for the energy to dissipate is given 
by 3 times the steady state energy divided by the 
energy transfer rate. These values give dissipation 
times of 22 Its, 40 Its, and 67 Its for the 1.5, 3.0, and 
4.5 km/s impacts, respectively. These dissipation 
times roughly scale with velocity, and are short 
enough to show why even though most of  the energy 
is being initially deposited in the target in kinetic 
and elastic energy, large amounts of  accumulated 
energy in these forms are not seen. 
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CONCLUSIONS 

The mechanisms of energy transfer into a target during impact have been detailed. The projectile 
energy is initially transformed into target kinetic energy, elastic compression energy and plastic dissipation. 
As impact velocity increases, more and more energy during the penetration event is temporarily deposited 
within the target as elastic compression and target kinetic energy. This energy will be dissipated by the 
target at a later time, but at the time of penetration these energy transfer mechanisms define the force 
acting on the projectile. Thus, for an energy-rate balance approach to successfully model penetration, it 
must include the transfer of  energy into kinetic energy within the target and the storage of  energy by 
elastic compression. Understanding the role of  energy dissipation in the target clarified the various terms 
in analytic models and identified their origin in terms of  the fundamental physics. Thus, even though the 
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initial kinetic energy of the projectile is increasing as the impact velocity squared, the energy transfer rate 
to the target increases in the same fashion, and thus there is only a slow increase in penetration depth with 
increasing velocity. 
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A P P E N D I X :  ENERGY-RATE BALANCE TO TATE 

This appendix demonstrates how energy-rate balance arguments can give rise to the simplified pene- 
tration model of Tate [12] and Alekseevskii [13]. The connection for the momentum balance is simple 
and direct (as shown in Walker and Anderson [1]), and can be seen from Eq. (39) in the main text by 
taking the limit as the three-dimensional model terms are allowed to go to zero: s ---> 0 and R ---> 0 gives 

1 2 1 2 7 ap 
-pp~L+~pp(V-U)  = ~p,u +-~In(a)Y,, ~' = -ppL (A1) 

The identification of ap with Yp and (7/3) ln(a)Y, with R, gives the model of Tate. 
In order to similarly obtain the Tate and Alekseevskii formulation with energy-rate arguments is either 

extremely difficult or requires a number of significant assumptions, as might be guessed due to the conclusions 
of the main text of this paper. To pursue a simple derivation, it will be assumed that the energy deposition 
in the target can be partitioned into two parts: a forward work part that represents the energy required to 
increase the depth of the crater, and a lateral work part that represents the energy required to open up the 
crater. In a similar fashion, the change in kinetic energy of the projectile will be partitioned into a loss of 
kinetic energy in the forward direction and a loss in the lateral direction. The work required to increase the 
depth of the crater will then be equated to the energy loss in the forward direction for the projectile. In 
reality, such a partitioning is questionable since energy is a scalar quantity and there is doubt that it is possible 
to separate the work required to increase the depth of a crater from the work required to open up the crater 
in the first place. However, as the paper has argued, to arrive at the simple formulation of Tate and Alek- 
seevskii with an energy model requires a complete model that includes energy transfer mechanisms, and the 
partitioning proposed here is an attempt to reflect the effects of some of those mechanisms. 

First consider the kinetic energy of the projectile. The projectile rear velocity is v and the projectile 
penetration velocity is u. Assuming minimal internal energy loss within the projectile due to projectile 
erosion, projectile material is deflected to move in the perpendicular direction at a velocity v-u. Thus, when 

eroded projectile material leaves the projectile it has a kinetic energy based on the velocity ~ = a/u 2 + (v - u)2. 
The kinetic energy of projectile material is thus 

= 1 2 dL ~ Ep Ap{ ~ppv L + fLl'°lpp f'2(L) j (A2) 
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where Ap is the cross sectional area of the projectile and the integral represents the kinetic energy in the 
eroded projectile material at the time of erosion (re is viewed as a function of residual projectile length). 
Differentiation with respect to time gives 

1 2 Ep = ap{ppv,;'L+~ppV L-lpprc2(L)L} = ap{ppv~L-pp(v-u)2u} (A3) 

For the target, the work rate assumed for increasing the depth of penetration is approximated by 

1 z 7 W, = -Ap(~p,u +~ln(oOY,)u (A4) 

where Ac is the area at the front of the crater being worked on. Equating Ep and W, requires that the ratio 
A/Ac be determined. To estimate the ratio, if the projectile density change is assumed minimal (which it is) 
and if the radial velocity of the projectile material were minimal (which it is not), then it is possible to show 
that mass conversation implies 8(Av)/~x = 0 and therefore it will be assumed that AplAc = u/v. With this 
assumption, equating the projectile energy rate with the target work rate gives 

. u 2 1 2 7 -p~vL +vpp(V-U) = ~p,u +~ln(l~)Y t (A5) 

which recovers the form of Tate and Alekseevskii since it is often the case that u/v~l/2. 


