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Abstract-- The mechanical processes leading to the cutoff of penetration of a shaped charge 
jet are still poorly understood. Eventually, high resolution 3D computer simulations may help 
resolve the mechanisms involved, but currently empirical models are required for practical work. 
The present work is concerned specifically with modeling the cutoff of high precision jets in 
metal targets. Motivated by a lack of success with existing jet penetration models when applied at 
very low drift velocities, the present work investigates a new approach. A new drift velocity term 
is added to one of the oldest and simplest models, the UMIN model. The new model is illustrated 
by applying it to the BRL 3.3 inch standard test charge, and the results are encouraging. 
© 2001 Elsevier Science Ltd. All rights reserved. 
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N O T A T I O N  

b drift coefficient for extended model cb breakup parameter, rb/7-b 
g gap between particles L particle length 
M cumulative mass P penetration 
rb (v) jet radius at breakup S standoff distance to target 
t time tb(v) breakup time 
tvo(V) t of local virtual origin U average penetration rate 
U0 rate coefficient for extended model Umi,~ penetration rate at cutoff 
v jet velocity vc jet cutoff velocity 
va radial drift velocity z axial distance from device 
Zvo(V) z of local virtual origin 7 (Pt/Pj) 1/~ 
5r radial drift distance pj jet density 
Pt target density 7"b(v) local breakup time duration 

I N T R O D U C T I O N  

When a shaped charge device is fired at a stack of  steel target blocks, the velocity of  the last 
particle to contribute to increasing the hole depth is called the "cutoff velocity". Although the 
cutoff velocity varies somewhat from shot to shot, the variations can be surprisingly small for high 
precision jets, with penetrations often repeatable to within a couple of  jet particle lengths. The 
jet cutoff process is still very poorly understood, although it is generally thought to be triggered 
by lateral interactions of  jet particles with the target material. When the cutoff velocity for a 
given device is tabulated as a function of  the standoff distance to the target, it is found to increase 
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Table 1. Cutoff velocity for best shots of the 3.3 inch BRL precision standard charge [ I ]. 
Standoff, CD's 2 5 8 12 15 20 25 
vc km/s 3.04 3.61 4.01 4.31 4.77 5.69 6.55 

monotonically. An example of such a table is displayed in Table 1. In this table, standoff distance 
is normalized to the charge diameter (CD). This data will be discussed later in this paper. At a 
sufficiently great distance, the cutoff velocity approaches the velocity of the jet tip, and penetration 
falls to a very low level. (Penetration does not fall to zero, because individual particles will still 
cause surface cratering, but jet particles below the cutoff velocity seem unable to act in concert to 
deepen a single hole). To someone unfamiliar with the jet cutoff effect, it can be quite surprising to 
see a radiograph of an apparently straight jet of particles which are almost completely ineffective 
against steel below a velocity of, say, 6 km/s, if the steel is beyond a certain standoff distance. 

One way to measure cutoff velocity is with timing screens placed between target blocks (e.g. 
Held, [2]). For precision charges, cutoff velocities obtained in this manner are normally in good 
agreement with estimates based upon applying hydrodynamic penetration assumptions to the jet 
from the tip down to the cutoff particle (e..g. Held, [3]). (The term "precision" will be used here 
to indicate jets which, through material selection, precision machining, and assembly techniques, 
have consistently low drift velocities, say below about 10 m/s.) This implies that the penetration 
process is efficient down to cutoff, and then terminates rather abruptly. 

Cutoff seems to be an inherently three-dimensional effect, and eventually high resolution 3D 
calculations should be able to clarify the mechanisms involved, but for now simplified penetration 
models are required. A variety of simplified jet penetration models have been proposed; for a 
review, see Walters and Zukas, [4]. Most models assume that the jet consumption obeys a hydro- 
dynamic penetration rule, but they vary widely in the treatment of the termination of penetration. 
The models may be broadly categorized as either empirical or geometrical. An example of an 
empirical model is the UMIN cutoff model of DiPersio, Simon, and Merindino (DSM) [1]. Exam- 
ples of geometrical models can be found in [5]-[8]. The geometrical models generally assume that 
particles have some statistical distribution of drift velocities, and in some cases rotation rates, and 
that a particle is unable to reach the bottom of the hole when it contacts the sidewall. 

It is almost always possible to find a set of drift velocities which allow a drift-based model 
to match any particular set of data, but it is very difficult to demonstrate the validity of such a 
model. This is because drift velocities are different in each shot, so it would be necessary to make 
simultaneous drift and cutoff velocity measurements for a single shot. This is a very difficult task, 
because accurate drift measurements normally require a long free flight of the jet, particularly for 
high precision jets. 

The present paper explores a new simple empirical cutoff model. It was developed in an at- 
tempt to overcome some difficulties encountered with a geometric model at low drift velocities. 
The problem, which may be common to other geometrical models, is related to the fact that a 
geometric model, when tested with zero drift, will typically predict "ideal" penetration, which 
is a theoretical limiting penetration generally far above actual measurements, particularly at long 
standoff'distances. The explanation normally given for the discrepancy is that real jets always have 
asymmetries and drift which prevent ideal penetration from being reached. Nevertheless, if ideal 
penetration is the limiting state for a geometrical model, then it will converge to this state as the 
drift velocity is decreased. The problem which was encountered was that the rate of convergence 
to ideal penetration seemed to be much too great, resulting in excessive penetration estimates for 
low drift jets. This is difficult to prove, because of the lack of simultaneous penetration and drift 
data, but the problem was significant enough to warrant examining an alternative approach. 

One possible source of error in some geometrical models has to do with the cylindrical cavity 
expansion model commonly used to model hole growth. This probably gives a reasonable de- 
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scription of hole growth during the continuous mode of penetration, but cutoff of precision jets 
nearly always occurs in the particulated mode, which produces very different hole characteristics, 
a fact well known to experimentalists (e.g. Held, [9]). In continuous penetration, the cavity wall 
is relatively smooth, whereas in particulated penetration, the penetration progresses with a series 
of "bubbles" in the target, each being caused by a single particle. These bubbles may be difficult 
to discern in tests of jets with high drift velocities, having been eroded away, but the hallmark of a 
low drift shot is a long chain of these bubbles. These bubbles are connected by constrictions which 
are much narrower than the average hole diameter. Particles traveling down the hole will strike 
these constrictions first, rather than the main cavity wall, and yet they are not typically included in 
a geometric model. 

19 18 17 16 15 

Fig. 1. Bubbles formed in an RHA steel target. The direction of jet travel is from left to right; the 
direction of target penetration is from right to left. The jet particles are molybdenum traveling at 
about 9 km/s. The breaks in bubbles 15 and 18 are due to target block interfaces. 

Figure 1 shows a sequence of jet particles and the bubbles they produced. This data is from 
a test by Boeka [10] in which a jet was captured on film before penetrating a target, and the 
individual jet particles were matched up with the bubbles that they created in the target. Hydrocode 
calculations were made of this penetration event and gave good agreement on the lengths and 
maximum diameters of the bubbles. They also showed that the openings between the bubbles are 
even smaller than in the sectioned target blocks, probably because the initial fine features of target 
blocks are later eroded away by jet material, perhaps as part of the cutoff process. 

A MODIFICATION OF THE UMIN MODEL TO INCLUDE RADIAL DRIFT 

To avoid the difficulties and uncertainties of detailed geometric modeling, an abstract approach 
will be taken here. It will be assumed that the cutoff effect is due to an obscure but essentially 
repeatable process. It should then be possible to develop a "black box" function which describes 
its overall effect as a function of the key parameters. As a starting point, consider the idealized 
situation of quasi-steady state penetration by a train of identical particles of some arbitrary shape, 
each having a velocity v, length L, radius rb, separation gap g, and a small radial drift distance 5r. 
The direction of this drift, in the plane perpendicular to the direction of flight, will be assumed to 
be essentially random. The penetration is assumed to be deep enough that there are no entrance 
effects. It is hypothesized that under these circumstances there is a well-defined cutoff velocity v~ 
such that penetration proceeds in a stable manner ifv > v~ and becomes unstable and is interrupted 
otherwise. If this is true, then there should be some function such that 

f(vc, L, 9, rb, 5r, particle shape, material properties) = 0. (1) 

While such a function might be very complicated, it should be possible to develop a useful approx- 
imation to it. 
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Fig. 2. Illustration of particle impact for computing average penetration rate. 

For reasons which will become clear, the minimum penetration rate (UMIN) model (DSM, 
[ 1 ]) makes a practical starting point for developing this function. This model postulates that cutoff 
occurs when the average penetration rate falls below a constant, Um,~, whose value has been shown 
to correlate well with target strength. In particulated penetration, the UMIN model can be shown 
to have the form f(vc, 9/L, material properties) = 0. In other words, it includes the effects of 
inter-particle gaps but not of radial drift. 

To show this, we need to express the average penetration rate in terms of the inter-particle gap. 
Consider the train of identical particles shown in figure 2, in which particle n is starting to penetrate 
in (a) and particle n + 1 is starting to penetrate in (b). The time interval between the two figures 
is At = (9 + L + AP) /v ,  and the hole bottom has advanced by a distance of AP,  so the average 
penetration rate U can be written 

U 

U = A P / A t  = 1 + - 7 ( 1 +  g/L) '  (2) 

where ~' = LIAP,  and equals (pt/Pj) I/2 if hydrodynamic penetration is assumed. When g/L is 
zero, U equals the continuous hydrodynamic penetration rate, and as 9/L increases, U decreases. 
During penetration by a stretching jet, the value of 9/L of the particle currently forming the hole 
bottom increases, and the value of v decreases, so that eventually the value of U falls below the 
critical constant, which implies cutoff according to the UMIN model. To show the model in the 
form of Eqn. 1, we can equate this expression to the constant Umi n and set v = vc, giving 

v~ - Umin = O. f(vc, 9/L, "7, Umi~) = 1 + 7(1 + g/L) (3) 

In a sense, the UMIN model is the extreme opposite of a geometric penetration model, because 
the UMIN model relies completely on the term 9/L to reduce penetration with distance, whereas 
a geometric cutoff model relies almost completely on drift, 5~, to reduce penetration with distance. 
In reality, both terms are probably important. The importance of lateral drift is well known; the 
gap is also important because the formation of constrictions between bubbles in the target depends 
upon it, and in addition, the greater the gap, the more likely it is that target ejecta can interfere with 
particle flight. 

What makes the UMIN model a good starting point for an empirical low-drift model is that 
it defines an experimental first approximation to the functional behavior of cutoff at low drift 
velocities. This is because the DSM authors collected data from repeated penetration tests and fit 
only the highest penetration results with the model. With enough precision shots, this procedure 
should converge to an experimentally defined low-drift cutoff limit. Although they fired relatively 
few shots, their results at least give a hint at the limiting behavior of cutoff at very low drift. 
They recognized, but did not attempt to model, the fact that random drift may produce penetration 
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results below the prediction of the constant U, nin condition. Later attempts were made to employ 
the UMIN model as a general cutoff law, rather than as a low-drift limit, sometimes with erratic 
results and sometimes with some success (Majerus and Scott,[14]; Shear et al. [15]). 

The idea of the present paper is to extend Umi,~ to be a function of 5~, thereby building a drift 
model which has the U,,~in model as its zero-drift limit, rather than ideal penetration. To insure 
that the model scales properly with size, the extended model must normalize 5~ to an appropriate 
dimension. The choice here is to use the jet particle breakup radius, rb, because, considering the 
narrow constrictions between the bubbles formed in particulated penetration, it is likely that drift 
distances on the order of rb are quite significant for the cutoff process. With this assumption, the 
functional dependence is Umi~ = Umi~(~r/rb). With the additional assumption that a first-order 
Taylor series expansion can be made for small drift velocities, the model can be written 

Urn,. = Uo (1 + bSr/rb) (4) 

where U0 and b are constants. This equation extends the empirical function, Eqn. 3, to have the 
form f (vc,  g /L ,  6r/rb, 7, U0) = 0. The model is still independent of L/rb, particle shape, and 
perhaps additional relevant material properties, but it will be shown that the addition of the drift 
term can significantly extend the usefulness of the UMIN model. 

EXTENSION TO STRETCHING JETS 

The preceding discussion concerned a steady state penetration process. To apply the model to 
a stretching jet, it will be assumed that the jet passes through a sequence of nearly steady states to 
which the model can be applied. 

A breakup model is required for a stretching jet. This is a separate modeling issue, but to 
illustrate the cutoff model, the present work assumes that the breakup time duration, ~-b(v), and 
breakup radius, rb(v), are proportional along the entire jet with the proportionality constant, cb. 
This assumption can be written 

~-b(v) = rb(v) /cb.  (5) 

The additional assumption of incompressibility implies the following relationship, which can be 
used to compute T~(V) from the slope of the cumulative mass curve (e.g. Hancock, [12]), 

71 pjC2T: : - d M /  dv. (6) 

(For clarity, from this point on the functional dependence on v of local jet properties such as Tb and 
rb will be assumed but not indicated). 

It is important to make a distinction between a global time scale, t, which may have an arbitrary 
zero reference point, and the local breakup time duration, Tb. For a stretching jet it is always 
possible to determine a local virtual origin in space and time, Zvo and t~o, and it will in general be 
different for each element of the jet. The assumption to be made here is that the clock for breakup 
starts at the local virtual origin time, so that ~-b = tb -- tvo. 

The variation in time of the radial drift distance, 6r, needs to be specified. A variety of assump- 
tions can be made, but here it will be assumed that the drift occurs according to a drift velocity Vd 
beginning at the local virtual origin, so that 

6r ---- vd(t -- tvo). (7) 

An expression for the penetration rate in a stretching, particulatedjet can be obtained as follows. 
The distance between two jet elements separated by a small velocity interval Av at time t is Az = 
( t - t v o ) A v ,  so that at breakup, the intervening jet length will be L ---- TbAv. After breakup, ignoring 
the effects of finite particle sizes and the associated local equilibrium processes, the increase in Az 
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Fig. 3. The BRL 3.3 inch standard charge, from [l]. Dimensions are in inches (1 in = 25.4 mm). 

Table 2. BRL 3.3 inch standard charge penetration data, from DSM, [1]. Only the best results at 
15 and 20 CD's were reported. 

Standoff, CD's Penetration, inches (1 inch = 25.4 mm) 
Precision c h a r g e  Non-precision charge 

2 15.7, 16.2, 15.5, 16.0, 15.6 15.3, 12.8, 15.1, 15.0, 16.0 
5 17.6, 18.8, 18.2, 18.6, 18.2 10.5, 14.8, 8.6 
8 17.8, 18.4, 18.8, 17.7 8.0, 5.2, 8.6, 8.3, 8.4 
12 17.0, 14.1, 14.5, 17.3 4.8, 6.4, 2.7, 7.0, 6.7 
15 15.3 (best) 
20 11.3 (best) 
25 2.5, 5.0, 5.6, 6.0, 7.6 2.0, 3.3, 0.8, 1.2 

will be accommodated by a gap growth of g = (t - tb)AV.  Substituting these expressions for L 
and g into Eqn. 2 gives the average penetration rate after particulation as 

U : v /[1  + 7 ( t  - t~o)/%], (8) 

where t is the hole:bottom time of the particle with velocity v. 

APPLICATION TO THE BRL 3.3 INCH STANDARD CHARGE 

The UMIN model was originally developed to fit the data collected for the BRL 3.3 inch (83.82 
mm) standard charge, Fig. 3, so it is appropriate to compare this extension of the model with the 
same data, which is shown in Table 2. 

The CALE hydrocode (Tipton, [11]) was used to find the cumulative mass curve, yielding the 
curve shown in Figure 4. Also shown is a smooth analytical fit to the calculated mass profile. This 
fit was used to make the small extrapolation from the calculated tip velocity, 8.17 km/s, to the 
reported experimental value of 8.3 km/s. The cumulative mass profile may be described as being 
almost linear from the tip down to about 5.5 km/s, and then highly curved down to about 4 km/s, 
and then nearly linear again down to 2 km/s. 

The charge has a reported breakup time of 103 #s and constant breakup radius of 1 mm. In 
the front, nearly linear section of the jet, a breakup time of 103/zs corresponds to a computed 
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Fig. 4. Cumulative mass for the BRL 3.3 inch standard charge, and a smooth fit. 

breakup radius of 1.15 mm, in fair agreement with this description. It is not possible to match both 
the reported breakup radius and breakup time below about 5.5 kin/s, however, so a compromise is 
required. In the present work, the value of the breakup model parameter cb will be taken to be the 
value found in the front section of the jet. 

Since the drift velocities in the original tests are unknown, it isn't possible to assign accurate 
values to the two cutoff model parameters, U0 and b. Nevertheless, some approximate values can 
be used to illustrate the use of the model. Since U0 defines the zero-drift condition, it must be 
chosen such that the corresponding zero-drift penetration curve is an upper bound on all test data. 
The original peak penetration in the DSM data was modeled with a constant value of U,~in=1000 
m/s. Based upon the cumulative mass fit used here, the maximum possible value of U0 is about 
1100 m/s. Since it is unlikely that any of the shots actually reached zero drift, the somewhat lower 
value of 900 m/s will be used here, which leaves a little margin between the zero drift curve and 
the peak of the data. The parameter b will be taken to have the value 0.5, which is estimated to 
produce drift velocities with the correct order of magnitude, and will serve to illustrate the model. 

Figure 5 compares the model predictions using these parameters with the test data. The pene- 
tration depths were computed assuming hydrodynamic penetration, dP = dL/7,  where dL is the 
length of a jet element at the time it reaches the hole bottom. The non-precision data is included 
in the plot along with the precision data, even though the primary aim of the model is to treat the 
precision data. The upper curve is the zero-drift penetration curve, and its height is controlled by 
the value of U0. Also plotted are curves for several drift values. The initial rise in the curves is due 
to jet stretching, and the decrease with standoff distance is controlled by the increase of particle 
drift as well as the increase of particle gaps with distance. 

It can be seen that the peak of the precision data falls largely between the 2 m/s and 4 m/s drift 
curves. To. show the comparison in numerical form, Table 3 compares the cutoff velocities for this 
drift range with the cutoff data previously shown as Table 1. The agreement is fairly good, and 
it illustrates how cutoff velocity information can be sometimes be compressed into simpler drift 
velocity information with the help of this model. 

A limitation on the model is that it predicts zero penetration when the predicted cutoff velocity 
exceeds the jet tip velocity. In reality, actual penetration will not fall to zero, because there will 
always be some surface penetration, which is different from the deep penetration mode treated by 
the model. This explains why the 25 CD non-precision data points are out of line (in terms of their 
lower apparent drift) with the rest of the non-precision data. A simple way to fix the model to 
account for this would be to place a reasonable lower bound on the model penetration predictions, 
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Fig. 5. Computed standoff curves for BRL 3.3 inch standard charge. 

Table 3. Comparison of Cutoff Velocities, in krn/s. 

Standoff, CD 2 5 8 12 ! 5 20 25 
Data, peak 3.04 3.61 4.01 4.31 4.77 5.69 6.55 
Model, va=2-4 m/s 2.75-2.90 3.35-3.59 3.76-4.04 4.25-4.75 4.71-5.21 5.39-5.89 5.88-6.41 

on the order of 1 CD. 
Most of the precision data lies between the 2 rn/s and 8 m/s drift velocity standoff curves, 

whereas the non-precision data falls mainly between the 16 m/s and 64 m/s curves (with the ex- 
ception noted for the non-precision 25 CD data). This suggests that the non-precision jets have 
drift velocities on the order of 8 times the precision jets. This is not unreasonable, based upon the 
published machining tolerances for these charges. 

In summary, it can be seen that the model provides a simple way to correlate and interpret test 
data, such as the data in Table 2, even with some uncertainties in the model parameters. An effec- 
tive way to use the model with test data is to determine the apparent drift velocity corresponding 
to the penetration of each shot. By compiling a history of such drift values, it becomes possible to 
predict with some confidence the range of penetration expected due to design and standoff changes. 

VARIATION OF CUTOFF VELOCITY WITH DISTANCE 

An interesting way to display cutoff velocity data is to follow a suggestion of Pearson [13], 
who showed a good correlation of cutoff data among a number of shaped charge devices by cross- 
plotting cutoff velocity with the flight distance of the cutoff particle, normalized to particle diam- 
eter. The present model can be expressed in a similar format. The appropriate relationship can be 
developed by combining the following expression for the trajectory of a particle with velocity v, 

z = Zvo + v ( t  - tvo), (9) 
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Fig. 6. Normalized flight distance vs. cutoff velocity. The data is for the BRL 3.3 inch standard 
charge. The curves are for cb=l 1.2 m/s, 7=0.94, U0=900 m/s, and b=0.5. 

with Eqns. 4, 5, 7, and 8 to get 

where 

[1+  V"xl [l + = o, 
Vo Vc J Vc J 

x = ( z  - Z v o ) / r b  ( 1 1 )  

is the virtual flight distance of the cutoff particle to the bottom of the hole, normalized to its 
breakup radius. This expands to a quadratic equation which may be solved for x as a function 
of vc. Figure 6 shows this plot for the same data as the previous figure. (Since cutoff velocities 
were not measured directly in the tests, they have been computed from the penetration depths by 
assuming hydrodynamic penetration down to cutoff). Only solutions of Eqn. l0 after breakup are 
applicable; this portion of a (vc,x) plot can be shown, by combining Eqns. 5, 9, and 11, to be the 
region of the plane above the line x = ve/cb. This line is the lower straight line in the plot, and the 
data points all fall above it, since cutoff is in the particulated mode for all of these tests. 

This plot essentially shows the maximum range at which a jet particle remains an effective 
penetrator, as a function of its velocity, radius, and drift velocity. The significance of the plot 
is that it provides a method for comparing cutoff data from different devices, along with model 
predictions, in a common format. 

ADDITIONAL COMMENTS 

The value for the new parameter, b, used to illustrate the model is, at present, only a rough 
estimate. But note that b is multiplied by the drift velocity, Vd, in the model, so an error in b 
simply translates into an error in the drift velocity scale. This means, for example, that if the value 
of b were halved in the previous example, then Figs. 5 an 6 would remain unchanged except for 
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the labels on the constant drift velocity curves, which would be doubled. Therefore, if the model 
is simply being used to correlate data and then make predictions based upon the estimated drift 
velocities, an error in the value of  b is completely unimportant. Only when the drift velocities need 
to be related to drift measurements or to other models, such as asymmetry models, is the value of  
b important. 

Another issue has to do with particle rotation. Some rotation is induced at breakup, and the 
magnitude is particularly large in brittle breakup. Modem high precision jets are typically ductile, 
so the amount of  rotation may be relatively low. Therefore, a rotation term may not normally be 
needed for high precision jets for short to moderate standoff distances. Even so, there will be some 
standoff distance beyond which the particle rotation angles becomes significant, so beyond that 
distance the model will overpredict penetration if it is only based upon radial drift. This probably 
explains why the 25 CD precision data in Fig. 5 appear to have somewhat high drift velocities. 
The actual standoff distance beyond which rotational effects cannot be ignored depends upon the 
ductility of  the breakup process, the particle sizes, and the aerodynamics of  flight. 

C O N C L U D I N G  REMARKS 

There are a variety of  circumstances which can lead to jet cutoff, so it should be emphasized 
that the model described here is intended specifically for cutoff of  precision jets during particulated 
penetration in homogeneous metal targets. For this limited but important set of conditions, the 
addition of  a drift term to the UMIN cutoff model greatly expands its usefulness and provides a 
very simple and convenient framework for correlating and interpreting penetration data, and for 
making penetration predictions. 
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